Generalized Conflict Learning for Hybrid Discrete/Linear Optimization
نویسندگان
چکیده
Conflict-directed search algorithms have formed the core of practical, model-based reasoning systems for the last three decades. At the core of many of these applications is a series of discrete constraint optimization problems and a conflict-directed search algorithm, which uses conflicts in the forward search step to focus search away from known infeasibilities and towards the optimal feasible solution. In the arena of model-based autonomy, deep space probes have given way to more agile vehicles, such as coordinated vehicle control, which must robustly control their continuous dynamics. Controlling these systems requires optimizing over continuous, as well as discrete variables, using linear as well as logical constraints. This paper explores the development of algorithms for solving hybrid discrete/linear optimization problems that use conflicts in the forward search direction, carried from the conflict-directed search algorithm in model-based reasoning. We introduce a novel algorithm called Generalized Conflict-Directed Branch and Bound (GCD-BB). GCD-BB extends traditional Branch and Bound (B&B), by first constructing conflicts from nodes of the search tree that are found to be infeasible or suboptimal, and then by using these conflicts to guide the forward search away from known infeasible and sub-optimal states. Evaluated empirically on a range of test problems of coordinated air vehicle control, GCD-BB demonstrates a substantial improvement in performance compared to a traditional B&B algorithm applied to either disjunctive linear programs or an equivalent binary integer programming encoding.
منابع مشابه
A Discrete Hybrid Teaching-Learning-Based Optimization algorithm for optimization of space trusses
In this study, to enhance the optimization process, especially in the structural engineering field two well-known algorithms are merged together in order to achieve an improved hybrid algorithm. These two algorithms are Teaching-Learning Based Optimization (TLBO) and Harmony Search (HS) which have been used by most researchers in varied fields of science. The hybridized algorithm is called A Di...
متن کاملEfficiently Solving Hybrid Logic/Optimization Problems Through Generalized Conflict Learning
An increasing range of problems in Artificial Intelligence and Computer Science, such as autonomous vehicle control and planning with resources, are formulated through a combination of logical, algebraic and cost constraints. Their solution requires a hybrid mixture of logical decision techniques and mathematical optimization. Using Disjunctive Programming (DP) to formulate these problems, we p...
متن کاملA class of multi-agent discrete hybrid non linearizable systems: Optimal controller design based on quasi-Newton algorithm for a class of sign-undefinite hessian cost functions
In the present paper, a class of hybrid, nonlinear and non linearizable dynamic systems is considered. The noted dynamic system is generalized to a multi-agent configuration. The interaction of agents is presented based on graph theory and finally, an interaction tensor defines the multi-agent system in leader-follower consensus in order to design a desirable controller for the noted system. A...
متن کاملA discrete-event optimization framework for mixed-speed train timetabling problem
Railway scheduling is a complex task of rail operators that involves the generation of a conflict-free train timetable. This paper presents a discrete-event simulation-based optimization approach for solving the train timetabling problem to minimize total weighted unplanned stop time in a hybrid single and double track railway networks. The designed simulation model is used as a platform for ge...
متن کاملHybrid Improved Dolphin Echolocation and Ant Colony Optimization for Optimal Discrete Sizing of Truss Structures
This paper presents a robust hybrid improved dolphin echolocation and ant colony optimization algorithm (IDEACO) for optimization of truss structures with discrete sizing variables. The dolphin echolocation (DE) is inspired by the navigation and hunting behavior of dolphins. An improved version of dolphin echolocation (IDE), as the main engine, is proposed and uses the positive attributes of an...
متن کامل